A Comparative Empirical Study of Discrete Choice Models in Retail Operations

Author:

Berbeglia Gerardo1ORCID,Garassino Agustín23,Vulcano Gustavo34ORCID

Affiliation:

1. Centre for Business Analytics, Melbourne Business School, The University of Melbourne, Carlton, Victoria 3053, Australia;

2. Department of Computer Science, University of Buenos Aires, Buenos Aires 1428, Argentina;

3. School of Business, Universidad Torcuato Di Tella, Buenos Aires 1428, Argentina;

4. CONICET, Buenos Aires 1428, Argentina

Abstract

Choice-based demand estimation is a fundamental task in retail operations and revenue management, providing necessary input data for inventory control, assortment, and price-optimization models. The task is particularly difficult in operational contexts where product availability varies over time and customers may substitute into the available options. In addition to the classical multinomial logit (MNL) model and extensions (e.g., nested logit, mixed logit, and latent-class MNL), new demand models have been proposed (e.g., the Markov chain model), and others have been recently revisited (e.g., the rank list-based and exponomial models). At the same time, new computational approaches were developed to ease the estimation function (e.g., column-generation and expectation-maximization (EM) algorithms). In this paper, we conduct a systematic, empirical study of different choice-based demand models and estimation algorithms, including both maximum-likelihood and least-squares criteria. Through an exhaustive set of numerical experiments on synthetic, semisynthetic, and real data, we provide comparative statistics of the predictive power and derived revenue performance of an ample collection of choice models and characterize operational environments suitable for different model/estimation implementations. We also provide a survey of all the discrete choice models evaluated and share all our estimation codes and data sets as part of the online appendix. This paper was accepted by Vishal Gaur, operations management.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3