A Framework for Analyzing Influencer Marketing in Social Networks: Selection and Scheduling of Influencers

Author:

Mallipeddi Rakesh R.1ORCID,Kumar Subodha2ORCID,Sriskandarajah Chelliah3ORCID,Zhu Yunxia4ORCID

Affiliation:

1. A. B. Freeman School of Business, Tulane University, New Orleans, Louisiana 70118;

2. Fox School of Business, Temple University, Philadelphia, Pennsylvania 19122;

3. Mays Business School, Texas A&M University, College Station, Texas 77843;

4. College of Business, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

Abstract

Explosive growth in the number of users on various social media platforms has transformed the way firms strategize their marketing activities. To take advantage of the vast size of social networks, firms have now turned their attention to influencer marketing wherein they employ independent influencers to promote their products on social media platforms. Despite the recent growth in influencer marketing, the problem of network seeding (i.e., identification of influencers to optimally post a firm’s message or advertisement) neither has been rigorously studied in the academic literature nor has been carefully addressed in practice. We develop a data-driven optimization framework to help a firm successfully conduct (i) short-horizon and (ii) long-horizon influencer marketing campaigns, for which two models are developed, respectively, to maximize the firm’s benefit. The models are based on the interactions with marketers, observation of firms’ message placements on social media, and model parameters estimated via empirical analysis performed on data from Twitter. Our empirical analysis discovers the effects of collective influence of multiple influencers and finds two important parameters to be included in the models, namely, multiple exposure effect and forgetting effect. For the short-horizon campaign, we develop an optimization model to select influencers and present structural properties for the model. Using these properties, we develop a mathematical programming based polynomial time procedure to provide near-optimal solutions. For the long-horizon problem, we develop an efficient solution procedure to simultaneously select influencers and schedule their message postings over a planning horizon. We demonstrate the superiority of our solution strategies for both short- and long-horizon problems against multiple benchmark methods used in practice. Finally, we present several managerially relevant insights for firms in the influencer marketing context. This paper was accepted by J. George Shanthikumar, big data analytics.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3