Using Explainable Artificial Intelligence to Improve Process Quality: Evidence from Semiconductor Manufacturing

Author:

Senoner Julian1ORCID,Netland Torbjørn1ORCID,Feuerriegel Stefan1ORCID

Affiliation:

1. Department of Management, Technology, and Economics, ETH Zurich, 8092 Zurich, Switzerland

Abstract

We develop a data-driven decision model to improve process quality in manufacturing. A challenge for traditional methods in quality management is to handle high-dimensional and nonlinear manufacturing data. We address this challenge by adapting explainable artificial intelligence to the context of quality management. Specifically, we propose the use of nonlinear modeling with Shapley additive explanations to infer how a set of production parameters and the process quality of a manufacturing system are related. Thereby, we contribute a measure of process importance based on which manufacturers can prioritize processes for quality improvement. Grounded in quality management theory, our decision model selects improvement actions that target the sources of quality variation. The decision model is validated in a real-world application at a leading manufacturer of high-power semiconductors. Seeking to improve production yield, we apply our decision model to select improvement actions for a transistor chip product. We then conduct a field experiment to confirm the effectiveness of the improvement actions. Compared with the average yield in our sample, the experiment returns a reduction in yield loss of 21.7%. Furthermore, we report on results from a postexperimental rollout of the decision model, which also resulted in significant yield improvements. We demonstrate the operational value of explainable artificial intelligence by showing that critical drivers of process quality can go undiscovered by the use of traditional methods. This paper was accepted by Charles Corbett, operations management.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3