Learning in Networks: An Experiment on Large Networks with Real-World Features

Author:

Choi Syngjoo1,Goyal Sanjeev23,Moisan Frederic4ORCID,To Yu Yang Tony2ORCID

Affiliation:

1. Department of Economics, Seoul National University, Seoul 08826, Republic of Korea;

2. University of Cambridge, Cambridge, United Kingdom;

3. New York University Abu Dhabi, Abu Dhabi, United Arab Emirates;

4. Emlyon Business School, GATE UMR 5824, 69130 Ecully, France

Abstract

Subjects observe a private signal and make an initial guess; they then observe their neighbors’ guesses, update their own guess, and so forth. We study learning dynamics in three large-scale networks capturing features of real-world social networks: Erdös–Rényi, Stochastic Block (reflecting network homophily), and Royal Family (that accommodates both highly connected celebrities and local interactions). We find that the Royal Family network is more likely to sustain incorrect consensus and that the Stochastic Block network is more likely to persist with diverse beliefs. These patterns are consistent with the predictions of DeGroot updating. It lends support to the notion that the use of simple heuristics in information aggregation is prevalent in large and complex networks. This paper was accepted by Yan Chen, behavioral economics and decision analysis. Funding: The authors thank the Keynes Fund (University of Cambridge), the Creative-Pioneering Researchers Program (Seoul National University), and C-BID (NYUAD) for financial support. Supplemental Material: The data files and e-companion are available at https://doi.org/10.1287/mnsc.2023.4680 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3