Affiliation:
1. Faculty of Business and Economics, University of Hong Kong, Hong Kong;
2. London Business School, London NW1 4SA, United Kingdom;
3. Faculty of Law, University of Hong Kong, Hong Kong
Abstract
Disputes over transactions on two-sided platforms are common and usually arbitrated through platforms’ customer service departments or third-party service providers. This paper studies crowd-judging, a novel crowdsourcing mechanism whereby users (buyers and sellers) volunteer as jurors to decide disputes arising from the platform. Using a rich data set from the dispute resolution center at Taobao, a leading Chinese e-commerce platform, we aim to understand this innovation and propose and analyze potential operational improvements with a focus on in-group bias (buyer jurors favor the buyer, likewise for sellers). Platform users, especially sellers, share the perception that in-group bias is prevalent and systematically sways case outcomes as the majority of users on such platforms are buyers, undermining the legitimacy of crowd-judging. Our empirical findings suggest that such concern is not completely unfounded: on average, a seller juror is approximately 10% likelier (than a buyer juror) to vote for a seller. Such bias is aggravated among cases that are decided by a thin margin and when jurors perceive that their in-group’s interests are threatened. However, the bias diminishes as jurors gain experience: a user’s bias reduces by nearly 95% as experience grows from zero to the sample median level. Incorporating these findings and juror participation dynamics in a simulation study, the paper delivers three managerial insights. First, under the existing voting policy, in-group bias influences the outcomes of no more than 2% of cases. Second, simply increasing crowd size through either a larger case panel or aggressively recruiting new jurors may not be efficient in reducing the adverse effect of in-group bias. Finally, policies that allocate cases dynamically could simultaneously mitigate the impact of in-group bias and nurture a more sustainable juror pool. This paper was accepted by Vishal Gaur, operations management. Funding: S. A. Yang and A. Zhang acknowledge the support of the Hong Kong General Research Fund [Grant “Decentralizing Platform Governance: Innovations from China; Project 17614921]. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2023.4818 .
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Strategy and Management
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献