Correlated Cluster-Based Randomized Experiments: Robust Variance Minimization

Author:

Candogan Ozan1ORCID,Chen Chen2ORCID,Niazadeh Rad1ORCID

Affiliation:

1. Booth School of Business, University of Chicago, Chicago, Illinois 60637;

2. New York University Shanghai, Shanghai 200124, China

Abstract

Experimentation is prevalent in online marketplaces and social networks to assess the effectiveness of new market intervention. To mitigate the interference among users in an experiment, a common practice is to use a cluster-based experiment, where the designer partitions the market into loosely connected clusters and assigns all users in the same cluster to the same variant (treatment or control). Given the experiment, we assume an unbiased Horvitz–Thompson estimator is used to estimate the total market effect of the treatment. We consider the optimization problem of choosing (correlated) randomized assignments of clusters to treatment and control to minimize the worst-case variance of the estimator under a constraint that the marginal assignment probability is [Formula: see text] for all clusters. This problem can be formulated as a linear program where both the number of decision variables and constraints are exponential in the number of clusters—and hence is generally computationally intractable. We develop a family of practical experiments that we refer to as independent block randomization (IBR) experiments. Such an experiment partitions clusters into blocks so that each block contains clusters of similar size. It then treats a fraction q of the clusters in each block (chosen uniformly at random) and does so independently across blocks. The optimal cluster partition can be obtained in a tractable way using dynamic programming. We show that these policies are asymptotically optimal when the number of clusters grows large and no cluster size dominates the rest. In the special case where cluster sizes take values in a finite set and the number of clusters of each size is a fixed proportion of the total number of clusters, the loss is only a constant that is independent of the number of clusters. Beyond the asymptotic regime, we show that the IBR experiment has a good approximation for any problem instance when q is not very tiny. We also examine the performance of the IBR experiments on data-driven numerical examples, including examples based on Airbnb and Facebook data. This paper was accepted by Itai Ashlagi, revenue management and market analytics. Funding: O. Candogan acknowledges NSF [Award 2216912] for “Institute for Data, Econometrics, Algorithms and Learning.” Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2021.02741 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3