Optimal Sequencing in Single-Player Games

Author:

Li Yifu1ORCID,Ryan Christopher Thomas2ORCID,Sheng Lifei3

Affiliation:

1. International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, PR China;

2. UBC Sauder School of Business, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada;

3. College of Business, University of Houston-Clear Lake, Houston, Texas 77058

Abstract

An important problem in single-player video game design is how to sequence game elements within a level (or “chunk”) of the game. Each element has two critical features: a reward (e.g., earning an item or being able to watch a cinematic) and a degree of difficulty (e.g., how much energy or focus is needed to interact with the game element). The latter property is a distinctive feature in video games. Unlike passive services (like a trip to the spa) or passive entertainment (like watching sports or movies), video games often require concerted effort to consume. We study how to sequence game elements to maximize overall experienced utility subject to the dynamics of adaptation to rewards and difficulty and memory decay. We find that the optimal design depends on the relationship between rewards and difficulty, leading to qualitatively different designs. For example, when the proportion of reward-to-difficulty is high, the optimal design mimics that of more passive experiences. By contrast, the optimal design of games with low reward-to-difficulty ratios resembles work-out routines with “warm-ups” and “cool-downs.” Intermediate cases may follow the classical “mini-boss, end-boss” design where difficulty has two peaks. Numerical results reveal optimal designs with “waves” of reward and difficulty with multiple peaks. Level designs with multiple peaks of difficulty are ubiquitous in video games. In summary, this paper provides practical guidance to game designers on how to match the design of single-player games to the relationship between reward and difficulty inherent in their game’s mechanics. Our model also has implications for other interactive services that share similarities with games, such as summer camps for children. This paper was accepted by Jeannette Song, operations management. Funding: This work was supported by the National Natural Science Foundation of China [Project 72201210] and Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2020-06488]. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2022.4665 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3