An Instrumental Variable Forest Approach for Detecting Heterogeneous Treatment Effects in Observational Studies

Author:

Wang Guihua1ORCID,Li Jun2ORCID,Hopp Wallace J.2ORCID

Affiliation:

1. Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080;

2. Ross School of Business, University of Michigan, Ann Arbor, Michigan 48109

Abstract

This study addresses the ubiquitous challenge of using big observational data to identify heterogeneous treatment effects. This problem arises in precision medicine, targeted marketing, personalized education, and many other environments. Identifying heterogeneous treatment effects presents several analytical challenges including high dimensionality and endogeneity issues. We develop a new instrumental variable tree (IVT) approach that incorporates the instrumental variable method into a causal tree (CT) to correct for potential endogeneity biases that may exist in observational data. Our IVT approach partitions subjects into subgroups with similar treatment effects within subgroups and different treatment effects across subgroups. The estimated treatment effects are asymptotically consistent under a set of mild assumptions. Using simulated data, we show our approach has a better coverage rate and smaller mean-squared error than the conventional CT approach. We also demonstrate that an instrumental variable forest (IVF) constructed using IVTs has better accuracy and stratification than a generalized random forest. Finally, by applying the IVF approach to an empirical assessment of laparoscopic colectomy, we demonstrate the importance of accounting for endogeneity to make accurate comparisons of the heterogeneous effects of the treatment (teaching hospitals) and control (nonteaching hospitals) on different types of patients. This paper was accepted by J. George Shanthikumar, big data analytics.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3