Fluid Approximations for Revenue Management Under High-Variance Demand

Author:

Bai Yicheng1ORCID,El Housni Omar1ORCID,Jin Billy1ORCID,Rusmevichientong Paat2ORCID,Topaloglu Huseyin1ORCID,Williamson David P.1ORCID

Affiliation:

1. School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853;

2. Marshall School of Business, University of Southern California, Los Angeles, California 90089

Abstract

One of the most prevalent demand models in the revenue management literature is based on dividing the selling horizon into a number of time periods such that there is at most one customer arrival at each time period. This demand model is equivalent to using a discrete-time approximation to a Poisson process, but it has an important shortcoming. If the mean number of customer arrivals is large, then the coefficient of variation of the number of customer arrivals has to be small. In other words, large demand volume and large demand variability cannot coexist in this demand model. In this paper, we start with a revenue management model that incorporates general mean and variance for the number of customer arrivals. This revenue management model has a random selling horizon length, capturing the distribution of the number of customer arrivals. The question we seek to answer is the form of the fluid approximation that corresponds to this revenue management model. It is tempting to construct the fluid approximation by computing the expected consumption of the resource capacities in the constraints and the total expected revenue in the objective function through the distribution of the number of customer arrivals. We demonstrate that this answer is wrong in the sense that it yields a fluid approximation that is not asymptotically tight as the resource capacities get large. We give an alternative fluid approximation where perhaps surprisingly, the distribution of the number of customer arrivals does not play any role in the constraints. We show that this fluid approximation is asymptotically tight as the resource capacities get large. A numerical study also demonstrates that the policies driven by the latter fluid approximation perform substantially better, so there is practical value in getting the fluid approximation right under high-variance demand. This paper was accepted by Omar Besbes, revenue management and market analytics. Funding: The work of the O. El Housni and H. Topaloglu was supported by a seed grant from Urban Tech research hub at Cornell Tech. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4769 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3