Learning in a Post-Truth World

Author:

Mostagir Mohamed1ORCID,Siderius James2ORCID

Affiliation:

1. Ross School of Business, University of Michigan, Ann Arbor, Michigan 48109

2. Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Misinformation has emerged as a major societal challenge in the wake of the 2016 U.S. elections, Brexit, and the COVID-19 pandemic. One of the most active areas of inquiry into misinformation examines how the cognitive sophistication of people impacts their ability to fall for misleading content. In this paper, we capture sophistication by studying how misinformation affects the two canonical models of the social learning literature: sophisticated (Bayesian) and naive (DeGroot) learning. We show that sophisticated agents can be more likely to fall for misinformation. Our model helps explain several experimental and empirical facts from cognitive science, psychology, and the social sciences. It also shows that the intuitions developed in a vast social learning literature should be approached with caution when making policy decisions in the presence of misinformation. We conclude by discussing the relationship between misinformation and increased partisanship and provide an example of how our model can inform the actions of policymakers trying to contain the spread of misinformation. This paper was accepted by Omar Besbes, revenue management and market analytics.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast or Slow? Competing on Publication Frequency;Manufacturing & Service Operations Management;2024-03

2. Modeling Misinformation Spread in a Bounded Confidence Model: A Simulation Study;Entropy;2024-01-23

3. The Promise of Communication and Education for Peace and Democracy;Communication and Education;2024-01-06

4. Belief inducibility and informativeness;Theory and Decision;2023-12-24

5. A Model of Online Misinformation;Review of Economic Studies;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3