Taming the Communication and Computation Complexity of Combinatorial Auctions: The FUEL Bid Language

Author:

Bichler Martin1ORCID,Milgrom Paul2ORCID,Schwarz Gregor1ORCID

Affiliation:

1. Department of Informatics, Technical University of Munich, 85748 Munich, Germany;

2. Department of Economics, Stanford University, Stanford, California 94305

Abstract

Combinatorial auctions have found widespread application for allocating multiple items in the presence of complex bidder preferences. The enumerative exclusive OR (XOR) bid language is the de facto standard bid language for spectrum auctions and other applications, despite the difficulties, in larger auctions, of enumerating all the relevant packages or solving the resulting NP-hard winner determination problem. We introduce the flexible use and efficient licensing (FUEL) bid language, which was proposed for radio spectrum auctions to ease both communications and computations compared with XOR-based auctions. We model the resulting allocation problem as an integer program, discuss computational complexity, and conduct an extensive set of computational experiments, showing that the winner determination problem of the FUEL bid language can be solved reliably for large realistic-sized problem instances in less than half an hour on average. In contrast, auctions with an XOR bid language quickly become intractable even for much smaller problem sizes. We compare a sealed-bid FUEL auction to a sealed-bid auction with an XOR bid language and to a simultaneous clock auction. The sealed-bid auction with an XOR bid language incurs significant welfare losses because of the missing bids problem and computational hardness, the simultaneous clock auction leads to a substantially lower efficiency than FUEL because of the exposure problem. This paper was accepted by Axel Ockenfels, behavioral economics and decision analysis. Funding: This work was supported by Deutsche Forschungsgemeinschaft [Grant BI 1057-1/8]. P. Milgrom gratefully acknowledges support from the U.S. National Science Foundation [Grant SES-1947514]. M. Bichler and G. Schwarz was supported by the German Research Foundation [Grants BI 1057 I-9 and 277991500]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.4465 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mediated talk: An experiment;Journal of Economic Theory;2023-03

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3