Price Optimization Under the Finite-Mixture Logit Model

Author:

van de Geer Ruben1,den Boer Arnoud V.23ORCID

Affiliation:

1. Beat Research B.V., 1012 WX Amsterdam, Netherlands;

2. Korteweg-de Vries Institute for Mathematics, University of Amsterdam, 1098 XG Amsterdam, Netherlands;

3. Amsterdam Business School, University of Amsterdam, 1018 TV Amsterdam, Netherlands

Abstract

We consider price optimization under the finite-mixture logit model. This model assumes that customers belong to one of a number of customer segments, where each customer segment chooses according to a multinomial logit model with segment-specific parameters. We reformulate the corresponding price optimization problem and develop a novel characterization. Leveraging this new characterization, we construct an algorithm that obtains prices at which the revenue is guaranteed to be at least [Formula: see text] times the maximum attainable revenue for any prespecified [Formula: see text]. Existing global optimization methods require exponential time in the number of products to obtain such a result, which practically means that the prices of only a handful of products can be optimized. The running time of our algorithm, however, is exponential in the number of customer segments and only polynomial in the number of products. This is of great practical value, because in applications, the number of products can be very large, whereas it has been found in various contexts that a low number of segments is sufficient to capture customer heterogeneity appropriately. The results of our numerical study show that (i) ignoring customer segmentation can be detrimental for the obtained revenue, (ii) heuristics for optimization can get stuck in local optima, and (iii) our algorithm runs fast on a broad range of problem instances. This paper was accepted by Omar Besbes, revenue management and market analytics.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An exact algorithm for the static pricing problem under discrete mixed logit demand;EURO Journal on Computational Optimization;2023

2. Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand;Production and Operations Management;2022-12-03

3. Learning to Collude in a Pricing Duopoly;Manufacturing & Service Operations Management;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3