Is Your Machine Better Than You? You May Never Know

Author:

de Véricourt Francis1ORCID,Gurkan Huseyin1ORCID

Affiliation:

1. European School of Management and Technology Berlin, 10178 Berlin, Germany

Abstract

Artificial intelligence systems are increasingly demonstrating their capacity to make better predictions than human experts. Yet recent studies suggest that professionals sometimes doubt the quality of these systems and overrule machine-based prescriptions. This paper explores the extent to which a decision maker (DM) supervising a machine to make high-stakes decisions can properly assess whether the machine produces better recommendations. To that end, we study a setup in which a machine performs repeated decision tasks (e.g., whether to perform a biopsy) under the DM’s supervision. Because stakes are high, the DM primarily focuses on making the best choice for the task at hand. Nonetheless, as the DM observes the correctness of the machine’s prescriptions across tasks, the DM updates the DM’s belief about the machine. However, the DM is subject to a so-called verification bias such that the DM verifies the machine’s correctness and updates the DM’s belief accordingly only if the DM ultimately decides to act on the task. In this setup, we characterize the evolution of the DM’s belief and overruling decisions over time. We identify situations under which the DM hesitates forever whether the machine is better; that is, the DM never fully ignores but regularly overrules it. Moreover, the DM sometimes wrongly believes with positive probability that the machine is better. We fully characterize the conditions under which these learning failures occur and explore how mistrusting the machine affects them. These findings provide a novel explanation for human–machine complementarity and suggest guidelines on the decision to fully adopt or reject a machine.This paper was accepted by Elena Katok, special issue on the human–algorithm connection.Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2023.4791 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3