Distributionally Robust Batch Contextual Bandits

Author:

Si Nian1ORCID,Zhang Fan1,Zhou Zhengyuan2ORCID,Blanchet Jose1ORCID

Affiliation:

1. Department of Management Science & Engineering, Stanford University, Stanford, California 94305;

2. Stern School of Business, New York University, New York, New York 10012

Abstract

Policy learning using historical observational data are an important problem that has widespread applications. Examples include selecting offers, prices, or advertisements for consumers; choosing bids in contextual first-price auctions; and selecting medication based on patients’ characteristics. However, existing literature rests on the crucial assumption that the future environment where the learned policy will be deployed is the same as the past environment that has generated the data: an assumption that is often false or too coarse an approximation. In this paper, we lift this assumption and aim to learn a distributionally robust policy with incomplete observational data. We first present a policy evaluation procedure that allows us to assess how well the policy does under worst-case environment shift. We then establish a central limit theorem type guarantee for this proposed policy evaluation scheme. Leveraging this evaluation scheme, we further propose a novel learning algorithm that is able to learn a policy that is robust to adversarial perturbations and unknown covariate shifts with a performance guarantee based on the theory of uniform convergence. Finally, we empirically test the effectiveness of our proposed algorithm in synthetic datasets and demonstrate that it provides the robustness that is missing using standard policy learning algorithms. We conclude the paper by providing a comprehensive application of our methods in the context of a real-world voting data set. This paper was accepted by Hamid Nazerzadeh, data science. Funding: This work was supported by the National Science Foundation [Grant CCF-2106508] and the Air Force Office of Scientific Research [Award FA9550-20-1-0397]. Z. Zhou also gratefully acknowledges the JP Morgan AI Research Grant and the New York University’s Center for Global Economy and Business faculty research grant for support on this work. Additional support is gratefully acknowledged from the National Science Foundation [Grants 1915967 and 2118199]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4678 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3