Appointment Scheduling for Multiple Servers

Author:

Kuiper Alex1ORCID,Lee Robert H.1ORCID

Affiliation:

1. Department of Business Analytics, Amsterdam Business School, University of Amsterdam, 1001 NL Amsterdam, Netherlands

Abstract

Appointment schedules, in essence, balance supply and demand and are often employed in settings where resources are scarce and thus a high utilization is realized (e.g., healthcare). Whereas most of the existing literature focuses on the single-server case, a framework is developed to study appointment scheduling in multiserver settings. Relying on phase-type approximations, general service-time distributions are modeled, which are fed into a recursive approach allowing evaluation and optimization of an objective function that balances expected waiting times and idle times. Studying optimized schedules for multiple servers reveals that the start and end of a session can deviate greatly from the dome-shaped pattern as established for the single-server case. Furthermore, a comparison of various multiserver setups shows that significant performance gains can be achieved when servers are pooled. This allows an explicit quantification of the cost of continuity of care. In addition, session overtime as well as early finish of servers can be incorporated in the approach; the benefits of the additional flexibility that a multiserver setting provides are summarized. For the stationary plateau of the dome, to which the optimal interarrival times converge, steady-state appointment schedules are obtained by exploiting the embedded Markov chain; these schedules are shown and argued to converge quickly to optimal solutions obtained in a heavy-traffic regime. In this regime, algebraic solutions are derived, which provide interesting managerial guidelines when the pooling of servers is considered in appointment scheduling. This paper was accepted by Bariş Ata, stochastic models and simulation.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3