Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in Partially Observed Markov Decision Processes

Author:

Bennett Andrew1,Kallus Nathan1ORCID

Affiliation:

1. Cornell Tech, Cornell University, New York, New York 10044

Abstract

In applications of offline reinforcement learning to observational data, such as in healthcare or education, a general concern is that observed actions might be affected by unobserved factors, inducing confounding and biasing estimates derived assuming a perfect Markov decision process (MDP) model. In “Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in Partially Observed Markov Decision Processes,” A. Bennett and N. Kallus tackle this by considering off-policy evaluation in a partially observed MDP (POMDP). Specifically, they consider estimating the value of a given target policy in an unknown POMDP, given observations of trajectories generated by a different and unknown policy, which may depend on the unobserved states. They consider both when the target policy value can be identified the observed data and, given identification, how best to estimate it. Both these problems are addressed by extending the framework of proximal causal inference to POMDP settings, using sequences of so-called bridge functions. This results in a novel framework for off-policy evaluation in POMDPs that they term proximal reinforcement learning, which they validate in various empirical settings.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3