A Finite Time Analysis of Temporal Difference Learning with Linear Function Approximation

Author:

Bhandari Jalaj1,Russo Daniel2ORCID,Singal Raghav1ORCID

Affiliation:

1. Operations Research, Columbia University, New York, New York 10027;

2. Graduate School of Business, Columbia University, New York, New York 10027

Abstract

Temporal difference learning (TD) is a simple iterative algorithm widely used for policy evaluation in Markov reward processes. Bhandari et al. prove finite time convergence rates for TD learning with linear function approximation. The analysis follows using a key insight that establishes rigorous connections between TD updates and those of online gradient descent. In a model where observations are corrupted by i.i.d. noise, convergence results for TD follow by essentially mirroring the analysis for online gradient descent. Using an information-theoretic technique, the authors also provide results for the case when TD is applied to a single Markovian data stream where the algorithm’s updates can be severely biased. Their analysis seamlessly extends to the study of TD learning with eligibility traces and Q-learning for high-dimensional optimal stopping problems.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3