Gaussian Process-Based Random Search for Continuous Optimization via Simulation

Author:

Wang Xiuxian1,Hong L. Jeff2ORCID,Jiang Zhibin13,Shen Haihui1ORCID

Affiliation:

1. Sino-US Global Logistics Institute, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China;

2. School of Management and School of Data Science, Fudan University, Shanghai 200433, China;

3. Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China

Abstract

A gaussian process-based random search framework for continuous optimization via simulation Stochastic optimization via simulation (OvS) is widely used for optimizing the performances of complex systems with continuous decision variables. Because of the existence of simulation noise and infinite feasible solutions, it is challenging to design an efficient mechanism to do the searching and estimation simultaneously to find the optimal solutions. In “Gaussian process-based random search for continuous optimization via simulation,” Wang et al. propose a Gaussian process-based random search (GPRS) framework for the design of single-observation and adaptive continuous OvS algorithms. This framework builds a Gaussian process surrogate model to estimate the objective function value of every solution based on a single observation of each sampled solution in each iteration and allow for a wide range of sampling distributions. They prove the global convergence and analyze the rate of convergence for algorithms under the GPRS framework. They also give a specific example of GPRS algorithms and validate its theoretical properties and practical efficiency using numerical experiments.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blackbox Simulation Optimization;Journal of the Operations Research Society of China;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3