Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator

Author:

Nguyen Viet Anh1ORCID,Kuhn Daniel2,Mohajerin Esfahani Peyman3ORCID

Affiliation:

1. Department of Management Science and Engineering, Stanford University, Stanford, California 94305;

2. Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;

3. Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, Netherlands

Abstract

Note. The best result in each experiment is highlighted in bold.The optimal solutions of many decision problems such as the Markowitz portfolio allocation and the linear discriminant analysis depend on the inverse covariance matrix of a Gaussian random vector. In “Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator,” Nguyen, Kuhn, and Mohajerin Esfahani propose a distributionally robust inverse covariance estimator, obtained by robustifying the Gaussian maximum likelihood problem with a Wasserstein ambiguity set. In the absence of any prior structural information, the estimation problem has an analytical solution that is naturally interpreted as a nonlinear shrinkage estimator. Besides being invertible and well conditioned, the new shrinkage estimator is rotation equivariant and preserves the order of the eigenvalues of the sample covariance matrix. If there are sparsity constraints, which are typically encountered in Gaussian graphical models, the estimation problem can be solved using a sequential quadratic approximation algorithm.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inference on the eigenvalues of the normalized precision matrix;Linear Algebra and its Applications;2024-12

2. Global Sensitivity Analysis via Optimal Transport;Management Science;2024-08-21

3. Portfolio optimization for sustainable investments;Annals of Operations Research;2024-08-12

4. Wasserstein Robust Classification with Fairness Constraints;Manufacturing & Service Operations Management;2024-07

5. Robust Kalman filters under epistemic uncertainty for non‐Gaussian systems with multiplicative noise;International Journal of Robust and Nonlinear Control;2024-03-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3