Is Q-Learning Minimax Optimal? A Tight Sample Complexity Analysis

Author:

Li Gen1,Cai Changxiao2,Chen Yuxin1ORCID,Wei Yuting1ORCID,Chi Yuejie3ORCID

Affiliation:

1. Department of Statistics and Data Science, Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104;

2. Department of Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania 19104;

3. Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Abstract

This paper investigates a model-free algorithm of broad interest in reinforcement learning, namely, Q-learning. Whereas substantial progress had been made toward understanding the sample efficiency of Q-learning in recent years, it remained largely unclear whether Q-learning is sample-optimal and how to sharpen the sample complexity analysis of Q-learning. In this paper, we settle these questions: (1) When there is only a single action, we show that Q-learning (or, equivalently, TD learning) is provably minimax optimal. (2) When there are at least two actions, our theory unveils the strict suboptimality of Q-learning and rigorizes the negative impact of overestimation in Q-learning. Our theory accommodates both the synchronous case (i.e., the case in which independent samples are drawn) and the asynchronous case (i.e., the case in which one only has access to a single Markovian trajectory).

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3