Computing Bayes–Nash Equilibrium Strategies in Auction Games via Simultaneous Online Dual Averaging

Author:

Bichler Martin1ORCID,Fichtl Max1ORCID,Oberlechner Matthias1ORCID

Affiliation:

1. Department of Computer Science, Technical University of Munich, 85748 Garching, Germany

Abstract

Determining equilibria in auction games is computationally hard in general, and no exact solution theory is known. We introduce an algorithmic framework in which we discretize type and action space and then learn distributional strategies via online optimization algorithms. We show that the equilibrium of the discretized auction game approximates an equilibrium in the continuous game. In a wide variety of auction games, we provide empirical evidence that the approach approximates the analytical (pure) Bayes–Nash equilibrium closely. In standard models in which agents are symmetric, we find equilibrium in seconds. The method allows for interdependent valuations and different types of utility functions, and it can be used to find equilibrium in auction markets and beyond.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3