A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX

Author:

Bonami Pierre1,Lodi Andrea23ORCID,Zarpellon Giulia4ORCID

Affiliation:

1. Gurobi Optimization, Madrid 28006, Spain;

2. Canada Excellence Research Chair “Data Science for Real-time Decision-Making” Polytechnique Montréal, Montreal, Quebec H3C 3A7, Canada;

3. Jacobs Technion-Cornell Institute, Cornell Tech and Technion, Israel Institute of Technology, New York, New York 10024;

4. Vector Institute, Toronto, Ontario M5G 1M1, Canada

Abstract

Despite modern solvers being able to tackle mixed-integer quadratic programming problems (MIQPs) for several years, the theoretical and computational implications of the employed resolution techniques are not fully grasped yet. An interesting question concerns the choice of whether to linearize the quadratic part of a convex MIQP: although in theory no approach dominates the other, the decision is typically performed during the preprocessing phase and can thus substantially condition the downstream performance of the solver. In “A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX,” Bonami, Lodi, and Zarpellon use machine learning (ML) to cast a prediction on this algorithmic choice. The whole experimental framework aims at integrating optimization knowledge in the learning pipeline and contributes a general methodology for using ML in MIP technology. The workflow is fine-tuned to enable online predictions in the IBM-CPLEX solver ecosystem, and, as a practical result, a classifier deciding on MIQP linearization is successfully deployed in CPLEX 12.10.0.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3