Robust Satisficing

Author:

Long Daniel Zhuoyu1ORCID,Sim Melvyn2ORCID,Zhou Minglong3ORCID

Affiliation:

1. Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong, China

2. Department of Analytics and Operations (DAO), NUS Business School, National University of Singapore, Singapore 119245

3. Department of Management Science, School of Management, Fudan University, Shanghai 200437, China

Abstract

We present a general framework for robust satisficing that favors solutions for which a risk-aware objective function would best attain an acceptable target even when the actual probability distribution deviates from the empirical distribution. The satisficing decision maker specifies an acceptable target, or loss of optimality compared with the empirical optimization model, as a trade-off for the model’s ability to withstand greater uncertainty. We axiomatize the decision criterion associated with robust satisficing, termed as the fragility measure, and present its representation theorem. Focusing on Wasserstein distance measure, we present tractable robust satisficing models for risk-based linear optimization, combinatorial optimization, and linear optimization problems with recourse. Serendipitously, the insights to the approximation of the linear optimization problems with recourse also provide a recipe for approximating solutions for hard stochastic optimization problems without relatively complete recourse. We perform numerical studies on a portfolio optimization problem and a network lot-sizing problem. We show that the solutions to the robust satisficing models are more effective in improving the out-of-sample performance evaluated on a variety of metrics, hence alleviating the optimizer’s curse. Funding: D. Z. Long is supported by the Hong Kong Research Grants Council [Grant 14207819]. M. Sim and M. Zhou are supported by the Ministry of Education, Singapore, under its 2019 Academic Research Fund Tier 3 [Grant MOE-2019-T3-1-010]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/opre.2021.2238 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3