Affiliation:
1. Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
2. Industrial and Systems and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
Abstract
In “Nonasymptotic Analysis of Monte Carlo Tree Search,” D. Shah, Q. Xie, and Z. Xu consider the popular tree-based search strategy, the Monte Carlo Tree Search (MCTS), in the context of the infinite-horizon discounted Markov decision process. They show that MCTS with an appropriate polynomial rather than logarithmic bonus term indeed leads to the desired convergence property. The authors derive the results by establishing a polynomial concentration property of regret for a class of nonstationary multiarm bandits. Furthermore, using this as a building block, they demonstrate that MCTS, combined with nearest neighbor supervised learning, acts as a “policy improvement” operator that can iteratively improve value function approximation.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献