Nonrobust Strong Knapsack Cuts for Capacitated Location Routing and Related Problems

Author:

Liguori Pedro Henrique1ORCID,Mahjoub A. Ridha12ORCID,Marques Guillaume34ORCID,Sadykov Ruslan3ORCID,Uchoa Eduardo35ORCID

Affiliation:

1. Laboratoire d’Analyse et de Modélisation de Systèmes pour l’Aide à la Décision, Université Paris-Dauphine (Paris Sciences & Lettres), Paris 75016, France;

2. Department of Statistics and Operations Research, College of Science, Kuwait University, Kuwait;

3. Institut National de Recherche en Sciences et Technologies du Numérique, Inria Centre at the University of Bordeaux, Talence 33405, France;

4. Atoptima SAS, Bordeaux 33000, France;

5. Departamento deEngenharia de Produção, Universidade Federal Fluminense, Niteroi-RJ 24210-240, Brazil

Abstract

“Nonrobust Strong Knapsack Cuts for Capacitated Location Routing and Related Problems,” by Liguori et al., presents a novel BCP algorithm for the CLRP and for other problems that share a nested knapsack structure. It outperforms existing exact algorithms in the literature, making it a powerful tool for solving instances with a large number of depot locations. A key methodological contribution is the introduction of RLKCs, a family of nonrobust cuts derived from the “outer” knapsack constraints. These cuts are strong in the sense that they contain all facets of the master knapsack polytope, dominating the cover cuts by Dabia et al. (2019) . By exploring their monotonicity and superadditivity properties, it is possible to adapt the labeling algorithm for handling RLKCs efficiently. The overall positive impact of RLKCs on the BCP performance varies depending on the problem and instance characteristics, but they have proven particularly effective for CLRP instances with tight depot capacities, making the final BCP algorithm more reliable.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3