Scores for Multivariate Distributions and Level Sets

Author:

Meng Xiaochun1ORCID,Taylor James W.2ORCID,Ben Taieb Souhaib3ORCID,Li Siran4ORCID

Affiliation:

1. University of Sussex Business School, University of Sussex, Brighton BN1 9SN, United Kingdom;

2. Saïd Business School, University of Oxford, Oxford OX1 1HP, United Kingdom;

3. Department of Computer Science, University of Mons, 7000 Mons, Belgium;

4. School of Mathematical Sciences and IMA-Shanghai, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Evaluating Forecasts of Multivariate Probability Distributions Forecasts of multivariate probability distributions are required for a variety of applications. The availability of a score for a forecast is important for evaluating prediction accuracy, as well as estimating model parameters. In “Scores for Multivariate Distributions and Level Sets,” X. Meng, J. W. Taylor, S. Ben Taieb, and S. Li propose a theoretical framework that encompasses several existing scores for multivariate distributions and can be used to generate new scores. In some multivariate contexts, a forecast of a level set is needed, such as a density level set for anomaly detection or the level set of the cumulative distribution, which can be used as a measure of risk. This motivates consideration of scores for level sets. The authors show that such scores can be obtained by decomposing the scores developed for multivariate distributions. A simple numerical algorithm is presented to compute the scores, and practical applications are provided in the contexts of conditional value-at-risk for financial data and the combination of expert macroeconomic forecasts.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3