Optimal Portfolio Diversification via Independent Component Analysis

Author:

Lassance Nathan1ORCID,DeMiguel Victor2ORCID,Vrins Frédéric1ORCID

Affiliation:

1. Louvain Finance, Louvain Institute of Data Analysis and Modeling, Université Catholique de Louvain, 7000 Mons, Belgium;

2. London Business School, Management Science and Operations Department, London NW1 4SA, United Kingdom

Abstract

A natural approach to enhance portfolio diversification is to rely on factor-risk parity, which yields the portfolio whose risk is equally spread among a set of uncorrelated factors. The standard choice is to take the variance as risk measure, and the principal components (PCs) of asset returns as factors. Although PCs are unique and useful for dimension reduction, they are an arbitrary choice: any rotation of the PCs results in uncorrelated factors. This is problematic because we demonstrate that any portfolio is a factor-variance-parity portfolio for some rotation of the PCs. More importantly, choosing the PCs does not account for the higher moments of asset returns. To overcome these issues, we propose using the independent components (ICs) as factors, which are the rotation of the PCs that are maximally independent, and care about higher moments of asset returns. We demonstrate that using the IC-variance-parity portfolio helps to reduce the return kurtosis. We also show how to exploit the near independence of the ICs to parsimoniously estimate the factor-risk-parity portfolio based on value at risk. Finally, we empirically demonstrate that portfolios based on ICs outperform those based on PCs, and several state-of-the-art benchmarks.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3