Affiliation:
1. Department of Computer Science, University of Maryland, College Park, Maryland 20742;
2. School of Mathematics, Institute for Studies in Theoretical Physics and Mathematics, Tehran 19538-33511, Iran
Abstract
The Colonel Blotto game (initially introduced by Borel in 1921) is commonly used for analyzing a wide range of applications from the U.S.Ppresidential election to innovative technology competitions to advertising, sports, and politics. After around a century Ahmadinejad et al. provided the first polynomial-time algorithm for computing the Nash equilibria in Colonel Blotto games. However, their algorithm consists of an exponential-size LP solved by the ellipsoid method, which is highly impractical. In “Fast and Simple Solutions of Blotto Games,” Behnezhad, Dehghani, Derakhshan, Hajighayi, and Seddighin provide the first polynomial-size LP formulation of the optimal strategies for the Colonel Blotto game using linear extension techniques. They use this polynomial-size LP to provide a simpler and significantly faster algorithm for finding optimal strategies of the Colonel Blotto game. They further show this representation is asymptotically tight, which means there exists no other linear representation of the strategy space with fewer constraints.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献