Black-Box Acceleration of Monotone Convex Program Solvers

Author:

London Palma1ORCID,Vardi Shai2ORCID,Eghbali Reza3,Wierman Adam1

Affiliation:

1. California Institute of Technology, Pasadena, California 91125;

2. Purdue University, West Lafayette, Indiana 47907;

3. University of California, Berkeley, California 94720

Abstract

When and where was the study conducted: This work was done in 2018, 2019 and 2020 when Palma London was a PhD student at Caltech and Shai Vardi was a postdoc at Caltech. This work was also done in part while Palma London was visiting Purdue University, and while Reza Eghbali was a postdoctoral fellow the Simons Institute for the Theory of Computing. Adam Wierman is a professor at Caltech. Article Summary and Talking Points: Please describe the primary purpose/findings of your article in 3 sentences or less. This paper presents a framework for accelerating (speeding up) existing convex program solvers. Across engineering disciplines, a fundamental bottleneck is the availability of fast, efficient, accurate solvers. We present an acceleration method that speeds up linear programing solvers such as Gurobi and convex program solvers such as the Splitting Conic Solver by two orders of magnitude. Please include 3-5 short bullet points of “Need to Know” items regarding this research and your findings. - Optimizations problems arise in many engineering and science disciplines, and developing efficient optimization solvers is key to future innovation. - We speed up linear programing solver Gurobi by two orders of magnitude. - This work applies to optimization problems with monotone objective functions and packing constraints, which is a common problem formulation across many disciplines. Please identify 2 pull quotes from your article that best capture the novelty and impact of your research. “We propose a framework for accelerating exact and approximate convex programming solvers for packing linear programming problems and a family of convex programming problems with linear constraints. Analytically, we provide worst-case guarantees on the run time and the quality of the solution produced. Numerically, we demonstrate that our framework speeds up Gurobi and the Splitting Conic Solver by two orders of magnitude, while maintaining a near-optimal solution.” “Our focus in this paper is on a class of packing problems for which data is either very costly or hard to obtain. In these situations, the number of data points available is much smaller than the number of variables. In a machine-learning setting, this regime is increasingly prevalent because it is often advantageous to consider larger and larger feature spaces, while not necessarily obtaining proportionally more data.” Article Implications - Please describe in 5 sentences or less the innovative takeaway(s) of your research. This framework applies to optimization problems with monotone objective functions and packing constraints, which is a common problem formulation across many disciplines, including machine learning, inference, and resource allocation. Providing fast solvers for these problems is crucial. We exploit characteristics of the problem structure and leverage statistical properties of the problem constraints to allow us to speed up optimization solvers. We present worst-case guarantees on run-time, and empirically demonstrate speedups of two orders of magnitude. -  Please describe in 5 sentences or less why your findings would be of interest to the general public. Many problems in engineering, science, math, and machine learning involve solving an optimization problem. Fast, efficient optimization solvers are key to future innovation in science and engineering. This work presents a tool to accelerate existing convex solvers, and thus can also be applied to future solvers. As the size of datasets grow it is even more crucial to have fast solvers. -  Who would be the most impacted by your research (i.e. by industry, job title, consumer category). Our work impacts machine-learning researchers and optimization researchers, in industry or academia.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3