Affiliation:
1. Nature Source Improved Plants, Ithaca, New York 14850;
2. Bazean Corporation, Houston, Texas 77002;
3. Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005
Abstract
For an integer programming model with fixed data, the linear programming relaxation gap is considered one of the most important measures of model quality. There is no consensus, however, on appropriate measures of model quality that account for data variation. In particular, when the right-hand side is not known exactly, one must assess a model based on its behavior over many right-hand sides. Gap functions are the linear programming relaxation gaps parametrized by the right-hand side. Despite drawing research interest in the early days of integer programming, the properties and applications of these functions have been little studied. In this paper, we construct measures of integer programming model quality over sets of right-hand sides based on the absolute and relative gap functions. In particular, we formulate optimization problems to compute the expectation and extrema of gap functions over finite discrete sets and bounded hyperrectangles. These optimization problems are linear programs (albeit of an exponentially large size) that contain at most one special ordered-set constraint. These measures for integer programming models, along with their associated formulations, provide a framework for determining a model’s quality over a range of right-hand sides.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献