Affiliation:
1. Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540
2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract
This paper investigates a problem of broad practical interest, namely, the reconstruction of a large-dimensional low-rank tensor from highly incomplete and randomly corrupted observations of its entries. Although a number of papers have been dedicated to this tensor completion problem, prior algorithms either are computationally too expensive for large-scale applications or come with suboptimal statistical performance. Motivated by this, we propose a fast two-stage nonconvex algorithm—a gradient method following a rough initialization—that achieves the best of both worlds: optimal statistical accuracy and computational efficiency. Specifically, the proposed algorithm provably completes the tensor and retrieves all low-rank factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e., minimal sample complexity and optimal estimation accuracy). The insights conveyed through our analysis of nonconvex optimization might have implications for a broader family of tensor reconstruction problems beyond tensor completion.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献