Accelerated MM Algorithms for Inference of Ranking Scores from Comparison Data

Author:

Vojnović Milan1ORCID,Yun Se-Young2ORCID,Zhou Kaifang1ORCID

Affiliation:

1. Department of Statistics, London School of Economics and Political Science, London WC2A 2AE, United Kingdom;

2. Kim Jaechul Graduate School of Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

Abstract

Accelerated Algorithms for RankingAssigning ranking scores to items based on observed comparison data (e.g., paired comparisons, choice, and full ranking outcomes) has been of continued interest in a wide range of applications, including information search, aggregation of social opinions, electronic commerce, online gaming platforms, and more recently, evaluation of machine learning algorithms. The key problem is to compute ranking scores, which are of interest for quantifying the strength of skills, relevancies, or preferences, and prediction of ranking outcomes. One of the most popular statistical models of ranking outcomes is the Bradley–Terry model for paired comparisons and its extensions to choice and full ranking outcomes. In “Accelerated MM Algorithms for Inference of Ranking Scores from Comparison Data,” M. Vojnovic, S.-Y. Yun, and K. Zhou show that a popular MM algorithm for inference of ranking scores for generalized Bradley–Terry ranking models suffers a slow convergence issue, and they propose a new accelerated algorithm that resolves this shortcoming and can yield substantial convergence speedups.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3