A Surrogate-Based Asynchronous Decomposition Technique for Realistic Security-Constrained Optimal Power Flow Problems

Author:

Petra Cosmin G.1ORCID,Aravena Ignacio1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory, Livermore, California 94550

Abstract

Solving realistic security-constrained optimal power flow problems In “A surrogate-based asynchronous decomposition technique for realistic security-constrained optimal power flow problems,” we propose a new algorithm for solving a classical problem in power grid operations: the security-constrained optimal power flow, considering its nonlinearities and realistic transitions between nominal and emergency post-contingency operations. Solving security-constrained optimal power flow problems accurately is a critical function, upon which depends the reliability, security, and efficiency of power systems as well as the correct functioning of other critical infrastructure dependent on electricity. The proposed algorithm was extensively tested against many state-of-the-art approaches using realistic and real instances in the ARPA-E Grid Optimization Competition Challenge 1, where it found the best-known solution for 58% of the instances, attained an average gap of less than 0.2%, and obtained the best overall scores, thereby winning all divisions of Challenge 1 with a very strong first place.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3