New Mixed-Integer Nonlinear Programming Formulations for the Unit Commitment Problems with Ramping Constraints

Author:

Bacci Tiziano1ORCID,Frangioni Antonio2ORCID,Gentile Claudio1ORCID,Tavlaridis-Gyparakis Kostas2

Affiliation:

1. Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti,” Consiglio Nazionale delle Ricerche, 00185 Rome, Italy;

2. Dipartimento di Informatica, Università di Pisa Largo B., 56127 Pisa, Italy

Abstract

Mixed-Integer Formulations for Power Production Problems The unit commitment problem is a complex mixed-integer nonlinear program that originates in the field of power production. Although it arises in a monopolistic system, there is still great attention to this problem even in a free-market regime, where it constitutes only a subproblem of larger ones. Historically, it was usually solved by Lagrangian relaxation methods. However, the advances achieved by commercial solvers of mixed-integer (linear and convex) programming problems have made such approaches an attractive option. T. Bacci, A. Frangioni, C. Gentile, and K. Tavlaridis-Gyparakis present the first mixed-integer nonlinear programming formulation with a polynomial number of both variables and constraints that describes the convex hull of the feasible solutions of the unit commitment problem with a single thermal generation unit, comprising all typical constraints and convex power generation costs. Proving that the formulation is exact requires a new result about the convex envelope of specially structured functions that can have independent interest. This new formulation for a single power generation unit is used to derive three new formulations for the general unit commitment problem whose effectiveness has been tested against the state-of-art formulation.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3