Affiliation:
1. Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109;
2. Department of Information and Operations Management, Mayes Business School, Texas A&M University, College Station, Texas 77845
Abstract
Joint online learning and resource allocation is a fundamental problem inherent in many applications. In a general setting, heterogeneous customers arrive sequentially, each of which can be allocated to a resource in an online fashion. Customers stochastically consume the resources, allocations yield stochastic rewards, and the system receives feedback outcomes with delay. In “Online Resource Allocation with Personalized Learning,” Zhalechian, Keyvanshokooh, Shi, and Van Oyen introduce a generic framework to solve this problem. It judiciously synergizes online learning with a broad class of online resource allocation mechanisms, where the sequence of customer contexts is adversarial, and the customer reward and resource consumption are stochastic and unknown. They propose online algorithms that strike a three-way balance between exploration, exploitation, and hedging against adversarial arrival sequence. A performance guarantee is provided for each online algorithm, and the efficacy of their algorithms is demonstrated using clinical data from a health system.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献