Monte Carlo Methods for Economic Capital

Author:

Li Yajuan1ORCID,Kaplan Zachary T.1ORCID,Nakayama Marvin K.1ORCID

Affiliation:

1. Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey 07102

Abstract

Economic capital (EC) is a risk measure used by financial firms to specify capital levels to protect (with high probability) against large unforeseen losses. Defined as the difference between an (extreme) quantile and the mean of the loss distribution, the EC is often estimated via Monte Carlo methods. Although simple random sampling (SRS) may be effective in estimating the mean, it can be inefficient for the extreme quantile in the EC. Applying importance sampling (IS) may lead to an efficient quantile estimator but can do poorly for the mean. Measure-specific IS (MSIS) instead uses IS to estimate only the quantile, and the mean is independently handled via SRS. We analyze large-sample properties of EC estimators obtained via SRS only, IS only, MSIS, IS using a defensive mixture, and a double estimator using both SRS and IS to estimate both the quantile and the mean, establishing Bahadur-type representations for the EC estimators and proving they obey central limit theorems. We provide asymptotic theory comparing the estimators when the loss is the sum of a large number of independent and identically distributed random variables. Numerical and simulation results, including for a large portfolio credit risk model with dependent obligors, complement the theory.History: Accepted by Bruno Tuffin, Area Editor for Simulation.Funding: This work was supported by the National Science Foundation [Grant CMMI-1537322].Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.0261 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0261 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3