Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs with Quality Guarantees

Author:

Zhang Wei12,Wang Kai1ORCID,Jacquillat Alexandre3ORCID,Wang Shuaian2

Affiliation:

1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China;

2. Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong SAR, China;

3. Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

Abstract

Stochastic programming involves large-scale optimization with exponentially many scenarios. This paper proposes an optimization-based scenario reduction approach to generate high-quality solutions and tight lower bounds by only solving small-scale instances, with a limited number of scenarios. First, we formulate a scenario subset selection model that optimizes the recourse approximation over a pool of solutions. We provide a theoretical justification of our formulation, and a tailored heuristic to solve it. Second, we propose a scenario assortment optimization approach to compute a lower bound—hence, an optimality gap—by relaxing nonanticipativity constraints across scenario “bundles.” To solve it, we design a new column-evaluation-and-generation algorithm, which provides a generalizable method for optimization problems featuring many decision variables and hard-to-estimate objective parameters. We test our approach on stochastic programs with continuous and mixed-integer recourse. Results show that (i) our scenario reduction method dominates scenario reduction benchmarks, (ii) our scenario assortment optimization, combined with column-evaluation-and-generation, yields tight lower bounds, and (iii) our overall approach results in stronger solutions, tighter lower bounds, and faster computational times than state-of-the-art stochastic programming algorithms.History: Accepted by Andrea Lodi, Area Editor for Design and Analysis of Algorithms–Discrete.Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2023.1295 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3