Setting Reserve Prices in Second-Price Auctions with Unobserved Bids

Author:

Rhuggenaath Jason1ORCID,Akcay Alp1ORCID,Zhang Yingqian1ORCID,Kaymak Uzay2ORCID

Affiliation:

1. Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands;

2. Jheronimus Academy of Data Science, 5211 DA ‘s-Hertogenbosch, Netherlands

Abstract

In this work we consider a seller who sells an item via second-price auctions with a reserve price. By controlling the reserve price, the seller can influence the revenue from the auction, and in this paper, we propose a method for learning optimal reserve prices. We study a limited information setting where the probability distribution of the bids from bidders is unknown and the values of the bids are not revealed to the seller. Furthermore, we do not assume that the seller has access to a historical data set with bids. Our main contribution is a method that incorporates knowledge about the rules of second-price auctions into a multiarmed bandit framework for optimizing reserve prices in our limited information setting. The proposed method can be applied in both stationary and nonstationary environments. Experiments show that the proposed method outperforms state-of-the-art bandit algorithms. In stationary environments, our method outperforms these algorithms when the horizon is short and performs as good as they do for longer horizons. Our method is especially useful if there is a high number of potential reserve prices. In addition, our method adapts quickly to changing environments and outperforms state-of-the-art bandit algorithms designed for nonstationary environments. Summary of Contribution: A key challenge in online advertising is the pricing of advertisements in online auctions. The scope of our study is second-price auctions with a focus on the reserve price optimization problem from a seller’s point of view. This problem is motivated by the real-life practice of small and medium-sized web publishers. However, the proposed solution approach is applicable to any seller who sells an item via second-price auctions and wants to optimize its reserve price during these auctions. Our solution approach is based on techniques from machine learning and operations research, and it would be beneficial especially for sellers who start the selling process without any historical data and can collect the data on the outcomes of the auctions while making reserve price decisions over time. History: Accepted by RamRamesh, Area Editor for Data Science & Machine Learning. Supplemental Material: The supplementary material is available at https://doi.org/10.1287/ijoc.2022.1199 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3