An Analytic Framework for Effective Public Health Program Design Using Correctional Facilities

Author:

Araz Ozgur M.1ORCID,Cruz-Aponte Mayteé2ORCID,Wilson Fernando A.3,Hanisch Brock W.4,Margalit Ruth S.5

Affiliation:

1. Supply Chain Management and Analytics, College of Business, University of Nebraska-Lincoln, Nebraska 68588;

2. Department of Mathematics-Physics, University of Puerto Rico at Cayey, Puerto Rico 00736;

3. Matheson Center for Health Care Studies, University of Utah, Salt Lake City, Utah 84108;

4. College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198;

5. Center for Global Engagement, Technion Israel Institute of Technology, Haifa 3200003, Israel

Abstract

We present a decision analytic framework that uses a mathematical model of Chlamydia trachomatis transmission dynamics in two interacting populations using ordinary differential equations. A public health survey informs model parametrization, and analytical findings guide the computational design of the decision-making process. The potential impact of jail-based screen-treat (S-T) programs on community health outcomes is presented. Numerical experiments are conducted for a case study population to quantify the effect and evaluate the cost-effectiveness of considered interventions. Numerical experiments show the effectiveness of increased jail S-T rates on community cases when resources for a community S-T program stays constant. Although this effect decreases when higher S-T rates are in place, jail-based S-T programs are cost-effective relative to community-based programs. Summary of Contribution: Public health programs have been developed to control community-wide infectious diseases and to reduce prevalence of sexually transmitted diseases (STD). These programs can consist of screening and treatment of diseases and behavioral interventions. Public correctional facilities play an important role in operational execution of these public health programs. However, because of lack of capacity and resources, public health programs using correctional facilities are questioned by policy-makers in terms of their costs and benefits. In this article, we present an analytical framework using a computational epidemiology model for supporting public health policy making. The system represents the dynamics of Chlamydia trachomatis transmission in two interacting populations, with an ordinary differential equations-based simulation model. The theoretical epidemic control conditions are derived and numerically tested, which guide the design of simulation experiments. Then cost-effectiveness of the potential policies is analyzed. We also present an extensive sensitivity analyses on model parameters. This study contributes to the computational epidemiology literature by presenting an analytical framework to guide effective simulation experimentation for policy decision making. The presented methodology can be applied to other complex policy and public health problems.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Urban Public Health Event Early Warning and Prediction System Based on ID3 Algorithm of Decision Tree Model;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29

2. Decision Analysis and Applications in Healthcare;International Series in Operations Research & Management Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3