The Maximum k-Colorable Subgraph Problem and Related Problems

Author:

Kuryatnikova Olga1ORCID,Sotirov Renata2ORCID,Vera Juan C.2ORCID

Affiliation:

1. Erasmus University Rotterdam, Rotterdam 3062 PA, Netherlands;

2. Department of Econometrics and Operations Research, Tilburg University, Tilburg 5000 LE, Netherlands

Abstract

The maximum k-colorable subgraph (MkCS) problem is to find an induced k-colorable subgraph with maximum cardinality in a given graph. This paper is an in-depth analysis of the MkCS problem that considers various semidefinite programming relaxations, including their theoretical and numerical comparisons. To simplify these relaxations, we exploit the symmetry arising from permuting the colors, as well as the symmetry of the given graphs when applicable. We also show how to exploit invariance under permutations of the subsets for other partition problems and how to use the MkCS problem to derive bounds on the chromatic number of a graph. Our numerical results verify that the proposed relaxations provide strong bounds for the MkCS problem and that those outperform existing bounds for most of the test instances. Summary of Contribution: The maximum k-colorable subgraph (MkCS) problem is to find an induced k-colorable subgraph with maximum cardinality in a given graph. The MkCS problem has a number of applications, such as channel assignment in spectrum sharing networks (e.g., Wi-Fi or cellular), very-large-scale integration design, human genetic research, and so on. The MkCS problem is also related to several other optimization problems, including the graph partition problem and the max-k-cut problem. The two mentioned problems have applications in parallel computing, network partitioning, floor planning, and so on. This paper is an in-depth analysis of the MkCS problem that considers various semidefinite programming relaxations, including their theoretical and numerical comparisons. Further, our analysis relates the MkCS results with the stable set and the chromatic number problems. We provide extended numerical results that verify that the proposed bounding approaches provide strong bounds for the MkCS problem and that those outperform existing bounds for most of the test instances. Moreover, our lower bounds on the chromatic number of a graph are competitive with existing bounds in the literature.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3