Parameterized Algorithms for Power-Efficiently Connecting Wireless Sensor Networks: Theory and Experiments

Author:

Bentert Matthias1,van Bevern René2ORCID,Nichterlein André1ORCID,Niedermeier Rolf1ORCID,Smirnov Pavel V.2ORCID

Affiliation:

1. Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, 10587 Berlin, Germany;

2. Department of Mechanics and Mathematics, Novosibirsk State University, 630090 Novosibirsk, Russian Federation

Abstract

We study a problem of energy-efficiently connecting a symmetric wireless communication network: given an n-vertex graph with edge weights, find a connected spanning subgraph of minimum cost, where the cost is determined by each vertex paying the heaviest edge incident to it in the subgraph. The problem is known to be NP-hard. Strengthening this hardness result, we show that even o(log n)-approximating the difference d between the optimal solution cost and a natural lower bound is NP-hard. Moreover, we show that under the exponential time hypothesis, there are no exact algorithms running in 2o(n) time or in [Formula: see text] time for any computable function f. We also show that the special case of connecting c network components with minimum additional cost generally cannot be polynomial-time reduced to instances of size cO(1) unless the polynomial-time hierarchy collapses. On the positive side, we provide an algorithm that reconnects O(log n)-connected components with minimum additional cost in polynomial time. These algorithms are motivated by application scenarios of monitoring areas or where an existing sensor network may fall apart into several connected components because of sensor faults. In experiments, the algorithm outperforms CPLEX with known integer linear programming (ILP) formulations when n is sufficiently large compared with c. Summary of Contribution: Wireless sensor networks are used to monitor air pollution, water pollution, and machine health; in forest fire and landslide detection; and in natural disaster prevention. Sensors in wireless sensor networks are often battery-powered and disposable, so one may be interested in lowering the energy consumption of the sensors in order to achieve a long lifetime of the network. We study the min-power symmetric connectivity problem, which models the task of assigning transmission powers to sensors so as to achieve a connected communication network with minimum total power consumption. The problem is NP-hard. We provide perhaps the first parameterized complexity study of optimal and approximate solutions for the problem. Our algorithms work in polynomial time in the scenario where one has to reconnect a sensor network with n sensors and O(log n)-connected components by means of a minimum transmission power increase or if one can find transmission power lower bounds that already yield a network with O(log n)-connected components. In experiments, we show that, in this scenario, our algorithms outperform previously known exact algorithms based on ILP formulations.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polynomial-time data reduction for weighted problems beyond additive goal functions;Discrete Applied Mathematics;2023-03

2. Two-level hub Steiner trees;Information Processing Letters;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3