Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information

Author:

Larsen Eric12ORCID,Lachapelle Sébastien13ORCID,Bengio Yoshua13ORCID,Frejinger Emma12ORCID,Lacoste-Julien Simon13ORCID,Lodi Andrea4ORCID

Affiliation:

1. Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec H3T 1J4, Canada;

2. CIRRELT, Université de Montréal, Montréal, Québec H3C 3J7, Canada;

3. Mila, Université de Montréal, Montréal, Québec H2S 3H1, Canada;

4. CERC, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada

Abstract

This paper offers a methodological contribution at the intersection of machine learning and operations research. Namely, we propose a methodology to quickly predict expected tactical descriptions of operational solutions (TDOSs). The problem we address occurs in the context of two-stage stochastic programming, where the second stage is demanding computationally. We aim to predict at a high speed the expected TDOS associated with the second-stage problem, conditionally on the first-stage variables. This may be used in support of the solution to the overall two-stage problem by avoiding the online generation of multiple second-stage scenarios and solutions. We formulate the tactical prediction problem as a stochastic optimal prediction program, whose solution we approximate with supervised machine learning. The training data set consists of a large number of deterministic operational problems generated by controlled probabilistic sampling. The labels are computed based on solutions to these problems (solved independently and offline), employing appropriate aggregation and subselection methods to address uncertainty. Results on our motivating application on load planning for rail transportation show that deep learning models produce accurate predictions in very short computing time (milliseconds or less). The predictive accuracy is close to the lower bounds calculated based on sample average approximation of the stochastic prediction programs.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3