Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming

Author:

Coniglio Stefano1ORCID,Gualandi Stefano2ORCID

Affiliation:

1. Department of Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom;

2. Department of Mathematics, University of Pavia, Pavia 27100, Italy

Abstract

In the context of the maximum stable set problem, rank inequalities impose that the cardinality of any set of vertices contained in a stable set be, at most, as large as the stability number of the subgraph induced by such a set. Rank inequalities are very general, as they subsume many classical inequalities such as clique, hole, antihole, web, and antiweb inequalities. In spite of their generality, the exact separation of rank inequalities has never been addressed without the introduction of topological restrictions on the induced subgraph and the tightness of their closure has never been investigated systematically. In this work, we propose a methodology for optimizing over the closure of all rank inequalities with a right-hand side no larger than a small constant without imposing any restrictions on the topology of the induced subgraph. Our method relies on the exact separation of a relaxation of rank inequalities, which we call relaxed k-rank inequalities, whose closure is as tight. We investigate the corresponding separation problem, a bilevel programming problem asking for a subgraph of maximum weight with a bound on its stability number, whose study could be of independent interest. We first prove that the problem is [Formula: see text]-hard and provide some insights on its polyhedral structure. We then propose two exact methods for its solution: a branch-and-cut algorithm (which relies on a family of faced-defining inequalities which we introduce in this paper) and a purely combinatorial branch-and-bound algorithm. Our computational results show that the closure of rank inequalities with a right-hand side no larger than a small constant can yield a bound that is stronger, in some cases, than Lovász’s Theta function, and substantially stronger than bounds obtained with standard inequalities that are valid for the stable set problem, including odd-cycle inequalities and wheel inequalities. Summary of Contribution: This paper proposes two original methods for solving a challenging cut-separation problem (of bilevel type) for a large class of inequalities valid for one of the key operations research problems, namely, the max stable set problem. An extensive set of experimental results validates the proposed methods. All the source code and data sets are available online on GitHub.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Worst-case analysis of clique MIPs;Mathematical Programming;2021-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3