Predictive Search for Capacitated Multi-Item Lot Sizing Problems

Author:

Wu Tao1ORCID

Affiliation:

1. School of Economics & Management, Tongji University, 200092 Shanghai, China

Abstract

For capacitated multi-item lot sizing problems, we propose a predictive search method that integrates machine learning/advanced analytics, mathematical programming, and heuristic search into a single framework. Advanced analytics can predict the probability that an event will happen and has been applied to pressing industry issues, such as credit scoring, risk management, and default management. Although little research has applied such technique for lot sizing problems, we observe that advanced analytics can uncover optimal patterns of setup variables given properties associated with the problems, such as problem attributes, and solution values yielded by linear programming relaxation, column generation, and Lagrangian relaxation. We, therefore, build advanced analytics models that yield information about how likely a solution pattern is the same as the optimum, which is insightful information used to partition the solution space into incumbent, superincumbent, and nonincumbent regions where an analytics-driven heuristic search procedure is applied to build restricted subproblems. These subproblems are solved by a combined mathematical programming technique to improve solution quality iteratively. We prove that the predictive search method can converge to the global optimal solution point. The discussion is followed by computational tests, where comparisons with other methods indicate that our approach can obtain better results for the benchmark problems than other state-of-the-art methods. Summary of Contribution: In this study, we propose a predictive search method that integrates machine learning/advanced analytics, mathematical programming, and heuristic search into a single framework for capacitated multi-item lot sizing problems. The advanced analytics models are used to yield information about how likely a solution pattern is the same as the optimum, which is insightful information used to divide the solution space into incumbent, superincumbent, and nonincumbent regions where an analytics-driven heuristic search procedure is applied to build restricted subproblems. These subproblems are solved by a combined mathematical programming technique to improve solution quality iteratively. We prove that the predictive search method can converge to the global optimal solution point. Through computational tests based on benchmark problems, we observe that the proposed approach can obtain better results than other state-of-the-art methods.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3