A Model-Free Approach for Solving Choice-Based Competitive Facility Location Problems Using Simulation and Submodularity

Author:

Legault Robin12ORCID,Frejinger Emma1ORCID

Affiliation:

1. Department of Computer Science and Operations Research and Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), Université de Montréal, Montreal, Quebec H3T 1J4, Canada;

2. Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

Abstract

This paper considers facility location problems in which a firm entering a market seeks to open facilities on a subset of candidate locations so as to maximize its expected market share, assuming that customers choose the available alternative that maximizes a random utility function. We introduce a deterministic equivalent reformulation of this stochastic problem as a maximum covering location problem with an exponential number of demand points, each of which is covered by a different set of candidate locations. Estimating the prevalence of these preference profiles through simulation generalizes a sample average approximation method from the literature and results in a maximum covering location problem of manageable size. To solve it, we develop a partial Benders reformulation in which the contribution to the objective of the least influential preference profiles is aggregated and bounded by submodular cuts. This set of profiles is selected by a knee detection method that seeks to identify the best tradeoff between the fraction of the demand that is retained in the master problem and the size of the model. We develop a theoretical analysis of our approach and show that the solution quality it provides for the original stochastic problem, its computational performance, and the automatic profile-retention strategy it exploits are directly connected to the entropy of the preference profiles in the population. Computational experiments on existing and new benchmark sets indicate that our approach dominates the classical sample average approximation method on large instances of the competitive facility location problem, can outperform the best heuristic method from the literature under the multinomial logit model, and achieves state-of-the-art results under the mixed multinomial logit model. We characterize a broader class of problems, which includes assortment optimization, to which the solving methodology and the analyses developed in this paper can be extended. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: This research was supported by Fonds de Recherche du Québec-Nature et Technologies and Institut de Valorisation des Données through scholarships to R. Legault. E. Frejinger was partially supported by the Canada Research Chair program [Grant 950-232244]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/ijoc.2023.0280 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3