PaPILO: A Parallel Presolving Library for Integer and Linear Optimization with Multiprecision Support

Author:

Gleixner Ambros12ORCID,Gottwald Leona2ORCID,Hoen Alexander2ORCID

Affiliation:

1. Hochschule für Technik und Wirtschaft Berlin, 10318 Berlin, Germany;

2. Zuse Institute Berlin, 14195 Berlin, Germany

Abstract

Presolving has become an essential component of modern mixed integer program (MIP) solvers, both in terms of computational performance and numerical robustness. In this paper, we present PaPILO, a new C++ header-only library that provides a large set of presolving routines for MIP and linear programming problems from the literature. The creation of PaPILO was motivated by the current lack of (a) solver-independent implementations that (b) exploit parallel hardware and (c) support multiprecision arithmetic. Traditionally, presolving is designed to be fast. Whenever necessary, its low computational overhead is usually achieved by strict working limits. PaPILO’s parallelization framework aims at reducing the computational overhead also when presolving is executed more aggressively or is applied to large-scale problems. To rule out conflicts between parallel presolve reductions, PaPILO uses a transaction-based design. This helps to avoid both the memory-intensive allocation of multiple copies of the problem and special synchronization between presolvers. Additionally, the use of Intel’s Threading Building Blocks library aids PaPILO in efficiently exploiting recursive parallelism within expensive presolving routines, such as probing, dominated columns, or constraint sparsification. We provide an overview of PaPILO’s capabilities and insights into important design choices. History: Accepted by Ted Ralphs, Area Editor for Software Tools. Funding: This work has been financially supported by Research Campus MODAL, funded by the German Federal Ministry of Education and Research [Grants 05M14ZAM, 05M20ZBM], and the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773897 (plan4res). The content of this paper only reflects the author’s views. The European Commission / Innovation and Networks Executive Agency is not responsible for any use that may be made of the information it contains. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0171 ), as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0171 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3