Exact and Heuristic Solution Techniques for Mixed-Integer Quantile Minimization Problems

Author:

Cattaruzza Diego1ORCID,Labbé Martine23ORCID,Petris Matteo1ORCID,Roland Marius4ORCID,Schmidt Martin4ORCID

Affiliation:

1. University Lille, CNRS, Centrale Lille, Inria, UMR 9189-CRIStAL, Lille, France;

2. Department of Computer Science, Université Libre de Bruxelles, 1050 Brussels, Belgium;

3. Parc Scientifique de la Haute Borne, Inria Lille-Nord Europe, 59650 Villeneuve d’Ascq, France;

4. Department of Mathematics, Trier University, 54296 Trier, Germany

Abstract

We consider mixed-integer linear quantile minimization problems that yield large-scale problems that are very hard to solve for real-world instances. We motivate the study of this problem class by two important real-world problems: a maintenance planning problem for electricity networks and a quantile-based variant of the classic portfolio optimization problem. For these problems, we develop valid inequalities and present an overlapping alternating direction method. Moreover, we discuss an adaptive scenario clustering method for which we prove that it terminates after a finite number of iterations with a global optimal solution. We study the computational impact of all presented techniques and finally show that their combination leads to an overall method that can solve the maintenance planning problem on large-scale real-world instances provided by the ROADEF/EURO challenge 2020 1 and that they also lead to significant improvements when solving a quantile-version of the classic portfolio optimization problem. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by the Deutsche Forschungsgemeinschaft [CRC TRR 154], Fonds De La Recherche Scientifique [PDR T0098.18], and Bundesministerium für Bildung und Forschung. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.0105 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3