Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization

Author:

Gupta Rishabh1,Zhang Qi1ORCID

Affiliation:

1. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

This work addresses inverse linear optimization, where the goal is to infer the unknown cost vector of a linear program. Specifically, we consider the data-driven setting in which the available data are noisy observations of optimal solutions that correspond to different instances of the linear program. We introduce a new formulation of the problem that, compared with other existing methods, allows the recovery of a less restrictive and generally more appropriate admissible set of cost estimates. It can be shown that this inverse optimization problem yields a finite number of solutions, and we develop an exact two-phase algorithm to determine all such solutions. Moreover, we propose an efficient decomposition algorithm to solve large instances of the problem. The algorithm extends naturally to an online learning environment where it can be used to provide quick updates of the cost estimate as new data become available over time. For the online setting, we further develop an effective adaptive sampling strategy that guides the selection of the next samples. The efficacy of the proposed methods is demonstrated in computational experiments involving two applications: customer preference learning and cost estimation for production planning. The results show significant reductions in computation and sampling efforts. Summary of Contribution: Using optimization to facilitate decision making is at the core of operations research. This work addresses the inverse problem (i.e., inverse optimization), which aims to infer unknown optimization models from decision data. It is, conceptually and computationally, a challenging problem. Here, we propose a new formulation of the data-driven inverse linear optimization problem and develop an efficient decomposition algorithm that can solve problem instances up to a scale that has not been addressed previously. The computational performance is further improved by an online adaptive sampling strategy that substantially reduces the number of required data points.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3