An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix

Author:

Badenbroek Riley1ORCID,de Klerk Etienne2ORCID

Affiliation:

1. Erasmus University Rotterdam, 3062 PA Rotterdam, Netherlands;

2. Tilburg University, 5037 AB Tilburg, Netherlands

Abstract

We propose an analytic center cutting plane method to determine whether a matrix is completely positive and return a cut that separates it from the completely positive cone if not. This was stated as an open (computational) problem by Berman et al. [Berman A, Dur M, Shaked-Monderer N (2015) Open problems in the theory of completely positive and copositive matrices. Electronic J. Linear Algebra 29(1):46–58]. Our method optimizes over the intersection of a ball and the copositive cone, where membership is determined by solving a mixed-integer linear program suggested by Xia et al. [Xia W, Vera JC, Zuluaga LF (2020) Globally solving nonconvex quadratic programs via linear integer programming techniques. INFORMS J. Comput. 32(1):40–56]. Thus, our algorithm can, more generally, be used to solve any copositive optimization problem, provided one knows the radius of a ball containing an optimal solution. Numerical experiments show that the number of oracle calls (matrix copositivity checks) for our implementation scales well with the matrix size, growing roughly like [Formula: see text] for d × d matrices. The method is implemented in Julia and available at https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl . Summary of Contribution: Completely positive matrices play an important role in operations research. They allow many NP-hard problems to be formulated as optimization problems over a proper cone, which enables them to benefit from the duality theory of convex programming. We propose an analytic center cutting plane method to determine whether a matrix is completely positive by solving an optimization problem over the copositive cone. In fact, we can use our method to solve any copositive optimization problem, provided we know the radius of a ball containing an optimal solution. We emphasize numerical performance and stability in developing this method. A software implementation in Julia is provided.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A simple method for convex optimization in the oracle model;Mathematical Programming;2023-08-10

2. Optimization under uncertainty and risk: Quadratic and copositive approaches;European Journal of Operational Research;2022-11

3. A Simple Method for Convex Optimization in the Oracle Model;Integer Programming and Combinatorial Optimization;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3