Online Routing Over Parallel Networks: Deterministic Limits and Data-driven Enhancements

Author:

Jalota Devansh1ORCID,Paccagnan Dario2,Schiffer Maximilian3ORCID,Pavone Marco4

Affiliation:

1. Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305;

2. Department of Computing, Imperial College London, London SW7 2BX, United Kingdom;

3. TUM School of Management, Technical University of Munich, Munich 80333, Germany;

4. Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305

Abstract

Over the past decade, GPS-enabled traffic applications such as Google Maps and Waze have become ubiquitous and have had a significant influence on billions of daily commuters’ travel patterns. A consequence of the online route suggestions of such applications, for example, via greedy routing, has often been an increase in traffic congestion since the induced travel patterns may be far from the system optimum. Spurred by the widespread impact of traffic applications on travel patterns, this work studies online traffic routing in the context of capacity-constrained parallel road networks and analyzes this problem from two perspectives. First, we perform a worst-case analysis to identify the limits of deterministic online routing. Although we find that deterministic online algorithms achieve finite, problem/instance-dependent competitive ratios in special cases, we show that for a general setting the competitive ratio is unbounded. This result motivates us to move beyond worst-case analysis. Here, we consider algorithms that exploit knowledge of past problem instances and show how to design data-driven algorithms whose performance can be quantified and formally generalized to unseen future instances. We then present numerical experiments based on an application case for the San Francisco Bay Area to evaluate the performance of the proposed data-driven algorithms compared with the greedy algorithm and two look-ahead heuristics with access to additional information on the values of time and arrival time parameters of users. Our results show that the developed data-driven algorithms outperform commonly used greedy online-routing algorithms. Furthermore, our work sheds light on the interplay between data availability and achievable solution quality. History: Accepted by Andrea Lodi, Area Editor for Design and Analysis of Algorithms–Discrete. Funding: This work was supported by National Science Foundation (NSF) Award 1830554 and by the German Research Foundation (DFG) under [Grant 449261765]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2023.1275 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3